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Although chemotherapy is a conventional cancer treatment, it may
induce a protumorigenic microenvironment by triggering the
release of proinflammatory mediators. In this study, we demon-
strate that ovarian tumor cell debris generated by first-line
platinum- and taxane-based chemotherapy accelerates tumor
progression by stimulating a macrophage-derived “surge” of
proinflammatory cytokines and bioactive lipids. Thus, targeting a
single inflammatory mediator or pathway is unlikely to prevent
therapy-induced tumor progression. Here, we show that combined
pharmacological abrogation of the cyclooxygenase-2 (COX-2) and
soluble epoxide hydrolase (sEH) pathways prevented the debris-
induced surge of both cytokines and lipid mediators by macro-
phages. In animal models, the dual COX-2/sEH inhibitor PTUPB
delayed the onset of debris-stimulated ovarian tumor growth
and ascites leading to sustained survival over 120 days postinjec-
tion. Therefore, dual inhibition of COX-2/sEH may be an approach
to suppress debris-stimulated ovarian tumor growth by prevent-
ing the therapy-induced surge of cytokines and lipid mediators.

debris | cyclooxygenase | soluble epoxide hydrolase |
inflammation | oxylipins

Epithelial ovarian cancer is the fifth leading cause of cancer-
related deaths in women (1). Tumor recurrence in ovarian

cancer following front-line platinum- and taxane-based chemo-
therapy occurs in 70% of patients, resulting in poor 5-y survival
rates (1). Although chemotherapy, targeted therapy, or irradiation
are mainstays in cancer treatment, tumor cells killed by the
treatment (“tumor cell debris”) may play a central role in the
tumor microenvironment to promote the growth of residual sur-
viving cancer cells (2–6). Chemotherapy promotes tumorigenesis,
angiogenesis, and metastasis via apoptotic tumor cell-induced
macrophage chemotaxis and proinflammatory cytokines (7–10).
Thus, cytotoxic cancer therapy is a double-edged sword; the very
treatment meant to control cancer is also helping it survive and
grow by inducing a protumorigenic microenvironment. Notably, a
single dose of paclitaxel or carboplatin, the chemotherapeutic
agents most commonly used in ovarian cancer, stimulates metas-
tasis in mice (11). However, the mechanisms of chemotherapy-
induced tumor growth remain poorly understood, providing a
challenge for the development of effective treatments (12–16).
A detrimental consequence of chemotherapy is the induction of

secreted protumorigenic factors, including inflammatory cytokines,
chemokines, proangiogenic growth factors, and danger signals (e.g.,
alarmins), which collectively create a prometastatic environment

(13, 14, 17). Moreover, endogenously produced bioactive lipid
molecules, collectively known as eicosanoids, may also contribute
to the therapy-induced prometastatic tumor microenvironment
(18–20). Eicosanoids are derived from arachidonic acid and are
pivotal regulators of inflammatory responses (21). Chemotherapy
or irradiation stimulates the release of tumor-promoting lipid
mediators, including prostaglandins, platelet-activating factor,
sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and
lysophosphatidic acid into the tumor microenvironment (5, 19, 22,
23). Chemotherapy has been recently reported to stimulate the
proliferation of ovarian cancer cells through a caspase-3–mediated
arachidonic acid pathway (24). Moreover, in vitro studies suggest
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that apoptotic tumor cells activate macrophages to release
proinflammatory bioactive lipids, such as S1P, and up-regulate
cyclooxygenase-2 (COX-2), a key enzyme in the biosynthesis of
prostaglandins (25). COX-2 is a potential therapeutic target in
ovarian cancer as its expression is associated with chemoresistance
and poor patient prognosis (26). Thus, chemotherapy-induced
mediators, including cytokines and bioactive lipids, create a
protumorigenic environment via multiple pathways.
While prostaglandins have been extensively studied in cancer,

investigation of oxylipins derived from cytochrome P450 (CYP)
enzymes has primarily focused on inflammation and cardiovas-
cular functions (27). CYP-derived epoxyeicosatrienoic acids
(EETs) stimulate the resolution of inflammation by promoting the
clearance of cellular debris by local macrophages and activating
antiinflammatory cytokine programs (28, 29). Clearance of tumor
cell debris by macrophages has recently been shown to exhibit
antitumor activity (2). EETs are rapidly metabolized in the body
by soluble epoxide hydrolase (sEH) to their corresponding dihy-
droxyeicosatrienoic acids (DiHETEs) (30). Pharmacological in-
hibitors of sEH (sEHIs) stabilize EETs, promote the formation of
proresolving mediators such as lipoxins (e.g., lipoxin A4), and may
counterregulate proinflammatory cytokines (31). In fact, abroga-
tion of sEH suppresses chronic inflammatory bowel disease and
inflammatory bowel disease-associated tumor formation in IL-10
knockout mice (32). Furthermore, inhibition of sEH reduces in-
flammation in multiple diseases, including atherosclerosis, ab-
dominal aortic aneurysm, dyslipidemia, hypertension, and diabetes
in various mouse models (30). Interestingly, sEHIs (e.g., t-AUCB)
or sEH-null mice synergize with nonsteroidal antiinflammatory
drugs (NSAIDs) and COX-2 selective inhibitors (e.g., celecoxib)
to reduce inflammation (33, 34). Moreover, a dual COX-2/sEH
inhibitor, 4-(5-phenyl-3-{3-[3-(4-trifluoromethyl-phenyl)-ureido]-
propyl}-pyrazol-1-yl) benzenesulfonamide (PTUPB), is more po-
tent in suppressing inflammatory pain and tumor growth than
celecoxib, t-AUCB, or the combination of celecoxib and t-AUCB
(35, 36). Strategies aimed at dampening the inflammatory re-
sponse to tumor cell debris by blocking more than one pathway
associated with production of proinflammatory mediators to pre-
vent debris-stimulated tumor growth are poorly characterized.
Here, we show that a “surge” or series of proinflammatory cy-

tokines and bioactive lipids induced by chemotherapy-generated
tumor cell debris is suppressed by dual COX-2/sEH inhibition.
Importantly, PTUPB inhibited debris-stimulated tumor growth in
an ovarian cancer model, which resulted in sustained survival for
over 120 d postinjection. To prevent tumor recurrence after ther-
apy, it is critical to neutralize the inherent tumor-promoting activity
of therapy-generated debris. Thus, dual inhibition of COX-2/sEH

may be an approach in cancer therapy to suppress chemotherapy-
induced proinflammatory mediators and debris-stimulated
tumor growth.

Results
Chemotherapy-Generated Debris Stimulates the Rapid Onset of
Ovarian Tumor Growth and Reduces Survival. To evaluate whether
chemotherapy-generated debris is biologically relevant in ovar-
ian cancer, we developed a debris-stimulated ovarian cancer
model (Fig. 1). To confirm that cytotoxic platinum- or taxane-
based chemotherapeutic agents used for treating ovarian cancer
can generate “debris” or dead cells (apoptotic cells, necrotic
cells, and cell fragments), we first treated murine (ID8) or hu-
man (OVCAR5) ovarian tumor cells with cisplatin, carboplatin,
or paclitaxel. Cisplatin, carboplatin, or paclitaxel generated 67%,
78%, and 56% cell death in ID8 ovarian cells, respectively (SI
Appendix, Fig. S1 A–C). Furthermore, carboplatin or paclitaxel
also generated human OVCAR5 ovarian tumor cell debris by
increasing the death rate three- to fourfold in the chemotherapy-
treated cells compared with vehicle-treated controls (SI Appen-
dix, Fig. S1 D and E). Thus, first-line cytotoxic platinum- and
taxane-based chemotherapy generates debris in both murine and
human ovarian tumor cell lines.
To assess the potential growth-stimulatory activity of such

chemotherapy-generated tumor cell debris in vivo, tumor cells
killed by chemotherapy in culture were collected and coinjected
with living ovarian tumor cells into mice. In the widely used ID8
murine ovarian cancer model (37), cisplatin-generated ID8 de-
bris coinjected with ID8 living cells markedly promoted in-
traperitoneal ovarian tumor growth and ascites, resulting in
reduced survival of immunocompetent C57BL/6 mice (Fig. 1A).
Paclitaxel-generated ID8 debris also stimulated growth of in-
traperitoneal and orthotopic ID8 tumors (Fig. 1 B and C). Thus,
mice coinjected with chemotherapy-generated debris and living
ovarian tumor cells exhibited markedly reduced survival and
accelerated development of ascites compared with mice injected with
living tumor cells alone. Remarkably, paclitaxel- or carboplatin-
generated ID8 debris coinjected with ID8 living cells stimulated
subcutaneous tumor growth in C57BL/6 mice (SI Appendix, Fig.
S2A). The histologic findings of debris-stimulated tumors demon-
strate tumor cells with numerous apoptotic cells and malignant cell
debris compared with tumors generated by ID8 living cells alone (SI
Appendix, Fig. S2B).
To demonstrate that stimulation of tumor growth by chemotherapy-

generated debris was not specific to murine tumors, we developed
a debris-stimulated human ovarian (OVCAR5) tumor model.
Carboplatin- or paclitaxel-generated OVCAR5 debris coinjected

Fig. 1. Chemotherapy-generated ovarian tumor cell debris stimulates tumor growth and shortens survival. Percent survival of mice coinjected intraperitoneally
with (A) cisplatin- or (B) paclitaxel-generated ID8 debris (9 × 105 dead cells) and ID8 living cells (1 × 106). n = 5 mice per group. Kaplan–Meier analysis indicated
significantly shortened survival in mice coinjected with (A) cisplatin- (log-rank test = 9.65, *P = 0.0019) or (B) paclitaxel- (log-rank test = 9.85, *P = 0.0017)
generated ID8 debris and ID8 living cells compared with ID8 living cells alone. Image shows representative mice on day 56 postinjection. Yellow dashed circle
indicates ascites in mice coinjected with paclitaxel-generated debris and ID8 living cells. (C) Percent survival of mice coinjected orthotopically with paclitaxel-
generated ID8 debris (9 × 105 dead cells) and ID8 living cells (1 × 106). n = 5 mice per group. Kaplan–Meier analysis indicated significantly shortened survival in mice
coinjected with paclitaxel-generated ID8 debris and ID8 living cells compared with ID8 living cells alone (log-rank test = 6.00, *P = 0.014).
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intraperitoneally with OVCAR5 living cells led to a rapid onset of
ascites and tumor growth reducing survival in immunocompro-
mised (SCID) mice compared with living tumor cells alone (SI
Appendix, Fig. S2C). Mice injected with chemotherapy-generated
debris alone, without living cells, did not exhibit tumor growth or
mortality, even at 94 d postinjection (Fig. 1 and SI Appendix, Fig.
S2). Thus, cytotoxic chemotherapy can generate ovarian tumor
cell debris that accelerates tumor growth in both murine and
human ovarian tumor models, resulting in reduced survival.

Cytokine Surge Triggered by Debris-Stimulated Macrophages Is
Prevented by Dual COX-2/sEH Inhibition. Proinflammatory cyto-
kines released by macrophages in the tumor microenvironment
exhibit protumorigenic activity (2, 38). We therefore assessed the
release of cytokines by macrophages stimulated with paclitaxel-
or carboplatin-generated ID8 debris. Chemotherapy-generated de-
bris triggered the release of a series, or “surge,” of proinflammatory
cytokines, including TNF-α, MIP-2/CXCL2, MIP-1β/CCL4, CCL2/
MCP-1, sICAM-1/CD54, and G-CSF, by RAW264.7 murine mac-
rophages compared with macrophages not exposed to the debris
(Fig. 2). Conditioned medium of the debris alone without macro-
phages contained scarce to undetectable levels of cytokines, thus the
cytokines were macrophage-derived (Fig. 2B). To exclude that the
debris-stimulated cytokine surge was specific to the RAW264.7
macrophage cell line, we performed cytokine array screening of
conditioned medium from primary human monocyte-derived
macrophages stimulated with paclitaxel-generated OVCAR5 debris.
Indeed, chemotherapy-generated debris triggered the release of a
surge of proinflammatory cytokines, including CCL2/MCP-1, MIP-1α/
MIP-1β, CCL5/RANTES, CXCL1/GROα, and IL-8, by human
monocyte-derived macrophages, compared with macrophages
not exposed to the debris (SI Appendix, Fig. S3A).
Release of proinflammatory cytokines, such as CCL2/MCP-1,

has been pharmacologically suppressed by dual inhibition of
COX-2 and sEH with PTUPB in a kidney injury model (39). To
evaluate whether combined COX-2/sEH inhibition can suppress
the debris-stimulated cytokine surge by macrophages, we treated
RAW264.7 macrophages with various concentrations of PTUPB
before stimulation with chemotherapy-generated ID8 debris.
Remarkably, PTUPB (5 μM) prevented the cytokine surge by
macrophages stimulated with ID8 debris generated by either pac-
litaxel or carboplatin (Fig. 2). Moreover, PTUPB also suppressed an
angiogenic cytokine surge by RAW264.7 macrophages stimulated
with debris, including serpin E1/PAI-1, osteopontin, MMP9, and
CCL2/MCP-1 (SI Appendix, Fig. S3 B and C). Additionally, PTUPB
inhibited a debris-stimulated cytokine surge by primary murine
peritoneal macrophages (SI Appendix, Fig. S3 D and E). PTUPB
also suppressed debris-stimulated macrophage release of IL-1ra
(Fig. 2 A and C and SI Appendix, Fig. S3D), consistent with the
association of decreased IL-1ra levels and improved survival in
ovarian cancer patients (40). Moreover, PUTPB did not induce cell
death of RAW264.7 macrophages or ovarian epithelial cells (B/
CMBA.Ov) (SI Appendix, Fig. S4 A and B). PTUPB also inhibited
proliferation of ID8 tumor cells in vitro (SI Appendix, Fig. S4C).
Thus, the protumorigenic and proangiogenic cytokine surge re-
leased by debris-stimulated macrophages was prevented by the dual
COX-2/sEH inhibitor PTUPB.

Dual COX-2/sEH Inhibition Differentially Regulates the Release of
Lipid Autacoid Mediators by Debris-Stimulated Macrophages. To
determine whether debris triggers the release of bioactive lipid
autacoids by macrophages, we performed LC-MS/MS–based oxy-
lipin profiling on the conditioned medium of RAW264.7 macro-
phages stimulated with paclitaxel-generated ID8 debris. Indeed, the
debris stimulated macrophages to release a surge of COX-derived
lipid mediators, including PGF2α, PGD2, and PGJ2 (Fig. 3, orange
bars) compared with macrophages not exposed to the debris (Fig. 3,
yellow bars) or debris alone without macrophages (Fig. 3, blue

bars). The dual COX-2/sEH inhibitor PTUPB suppressed this
debris-stimulated surge of bioactive lipids released by the macro-
phages (Fig. 3, gray bars).
We next evaluated whether macrophages can reduce a series

of lipids in response to chemotherapy-generated debris. LC-MS/
MS–based oxylipin profiling of conditioned medium of the debris
alone without macrophages (Fig. 3, blue bars) revealed levels of
PGE2, THF diol, 15-HETE, 11-HETE, and 5-HETE that were
decreased when debris was added to macrophages (Fig. 3, or-
ange bars). Interestingly, PTUPB neutralized the reduction of
these lipids by debris-stimulated macrophages (Fig. 3, gray bars).
Furthermore, PTUPB also suppressed the release of 15-oxoETE
by macrophages in the presence of debris (Fig. 3, gray bars)
compared with debris-stimulated macrophages without PTUPB
(Fig. 3, orange bars) or macrophages not exposed to the debris
(Fig. 3, yellow bars). In contrast, debris did not affect the release
of TXB2, 15d-PGJ2, 12,13-DiHOME, 9,10-DiHOME, 12,13-EpOME,
9,10-EpOME, 9-oxoODE, 12-HETE, 13-HODE, 9-HODE, EKODE,
9,12,13-TriHOME, or 9,10,13-TriHOME by macrophages in the
presence or absence of PTUPB (SI Appendix, Fig. S5). Taken
together, these results suggest an active process in which dual
COX-2/sEH inhibition differentially regulates the release of lipid
autacoid mediators by macrophages stimulated with chemotherapy-
generated tumor cell debris.

Fig. 2. Cytokine surge by debris-stimulated macrophages is prevented by
the dual COX-2/sEH inhibitor PTUPB. (A) Cytokine array of conditioned me-
dium from RAW264.7 murine macrophages treated with vehicle or PTUPB
and stimulated with paclitaxel-generated ID8 debris. (B) ELISA quantification
of proinflammatory cytokines released by RAW264.7 macrophages treated
with vehicle (black bars) or PTUPB (5 μM) (blue bars) for 2 h and stimulated
with paclitaxel-generated ID8 debris, or by paclitaxel-generated ID8 debris
alone without macrophages. Data are presented as means (pg/mL) ± SEM
n = 7–8/group. *P < 0.05 vs. RAW264.7 + paclitaxel-generated ID8 dead cells.
n.d., not detectable. (C) Cytokine array of conditioned medium from
RAW264.7 murine macrophages treated with vehicle or PTUPB for 2 h and
stimulated with carboplatin-generated ID8 debris.
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Suppression of in Vivo Proinflammatory/Proangiogenic Cytokines and
Debris-Stimulated Ovarian Tumor Growth via Dual COX-2/sEH
Inhibition. We next assessed whether dual COX-2/sEH inhibition
could suppress proinflammatory and proangiogenic cytokines in
mice bearing intraperitoneal ovarian tumors (ID8). PTUPB re-
duced serum levels of CXCL13/BCA-1 and SDF-1/CXCL12 in
mice administered systemic chemotherapy (SI Appendix, Fig. S6 A
and B). In addition, PTUPB also inhibited proangiogenic factors
serpin E1/PAI-1 and IGFBP1 in serum from mice intraperitoneally
injected with ID8 (1 × 106 living cells) compared with control (Fig.
4A). Furthermore, ascites from PTUPB-treated mice bearing in-
traperitoneal ID8 tumors exhibited decreased levels of proinflam-
matory and proangiogenic cytokines, including PIGF-2, PTX-3,
MMP9, CCL2/MCP-1, fractalkine/CX3CL1, and angiopoietin-1
compared with control on day 60 postinjection (Fig. 4B and SI
Appendix, Fig. S6C).
To determine whether PTUPB could suppress debris-stimulated

ovarian tumor growth, mice were coinjected intraperitoneally with
paclitaxel- or carboplatin-generated ID8 debris and ID8 living cells.
Remarkably, PTUPB induced sustained survival over 120 d post-
injection in mice bearing debris-stimulated intraperitoneal ovarian
tumors compared with control (Fig. 5 A and B). Moreover, PTUPB
suppressed debris-stimulated orthotopic ovarian tumor growth and
prolonged survival (Fig. 5C).

Discussion
Epithelial ovarian cancer is often clinically detected at a late
stage in which cancer cells have already spread throughout the
peritoneum (1). Most ovarian cancer patients who initially re-
spond to surgery combined with platinum- and taxane-based
chemotherapy, develop recurrent tumors within 1–5 y, leading
to poor prognosis (1). While reducing tumor burden via killing
cancer cells is considered a hallmark success of therapy, the
resulting tumor cell debris promotes growth and metastasis of
the surviving cancer cells (2). We show here that ovarian tumor
cell debris generated by chemotherapy induces a surge of cy-
tokines and lipid autacoid mediators that creates a protu-
morigenic microenvironment. Novel therapeutics that can be
combined with conventional chemotherapy are required to
ameliorate the underappreciated protumorigenic activity in-
duced by the debris.
The ovarian tumor microenvironment is enriched in cytokines

and bioactive lipids (41). High circulating levels of proin-
flammatory cytokines—such as IL-6, CCL2/MCP-1, and TNF-
α—have been identified in ovarian cancer patients and play

critical roles in the development and progression of the disease
(42, 43). These cytokines perpetuate a vicious cycle by recruiting
and activating cytokine-producing cells that further promote
their protumorigenic activity. Recent studies show that cytokine
antagonists may represent a possible strategy in the treatment of
ovarian cancer. However, targeting a single cytokine/chemokine
in platinum-resistant ovarian cancer (e.g., monoclonal antibodies
against IL-6 or TNF-α) has had only transient and limited anti-
tumor activity in patients (44, 45). Therefore, blocking only one
or a few cytokines induced by cytotoxic therapy-generated debris
may not prevent tumor recurrence.
In addition to cytokines, bioactive lipid mediators also play a role

in treatment-induced tumor progression (19, 20). The second-line
ovarian chemotherapeutic doxorubicin triggers the release of in-
flammatory prostaglandins and leukotrienes, causing an “eicosanoid
storm” (46, 47). Here, we demonstrate via LC-MS/MS–based oxy-
lipin profiling that PTUPB prevented a debris-induced surge of
proinflammatory bioactive lipids—including PGF2α, PGD2, and
PGJ2—by macrophages. PTUPB also neutralized the reduction of
PGE2, THF diol, 15-HETE, 11-HETE, and 5-HETE by debris-
stimulated macrophages. Our findings are consistent with re-
ports that PGE2 promotes lipid mediator class switching to
stimulate resolution (48) and that it can act as a damage-
associated molecular pattern in therapy-induced dead tumor
cells to regulate inflammation (49). In addition, while 15-HETE
and 11-HETE exhibit protumorigenic activity in breast cancer, these
lipids have been shown to possess antitumorigenic activity in various
cancers, including ovarian cancer (41, 50). The COX-derived pros-
taglandins, LOX-derived HETEs, CYP450-derived DiHOMEs,
and EpOMEs identified in the conditioned medium of the
chemotherapy-generated tumor cell debris without macrophages
indicate that the debris itself may be a source of tumor growth-
stimulation.
Because the synthesis of oxylipins depend on common key en-

zymes, blockade of these biosynthetic enzymes may represent a
promising therapeutic strategy. Targeting multiple inflammatory
mediators simultaneously has long been a desired therapeutic
strategy but is challenging to achieve with antibodies directed
against individual cytokines. We demonstrate that an approach to
suppress proinflammatory cytokines and bioactive lipids is the
combined inhibition of COX-2 and sEH pathways. Dual COX-2/
sEH inhibition with a single compound, PTUPB, has been
reported to decrease inflammatory and oxidative stress markers
in a kidney injury model (39). Inhibition of sEH by PTUPB blocks
and even reverses the adverse toxicities caused by NSAIDs, such
as gastrointestinal erosion in gastric ulcers (51) and may reduce
cardiovascular risks associated with coxibs, such as celecoxib or

Fig. 3. Dual COX-2/sEH inhibition differentially regulates the release of lipid
mediators by debris-stimulated macrophages. LC-MS/MS–based oxylipin analysis
of conditioned medium from paclitaxel-generated ID8 debris alone without
macrophages (“debris alone,” blue bars) or from RAW264.7 macrophages
stimulated with paclitaxel-generated ID8 debris (orange bars), PTUPB-
treated macrophages (5 μM, 2 h) stimulated with paclitaxel-generated ID8
debris (gray bars), or macrophages not stimulated with debris (“macrophages
alone,” yellow bars). PTUPB inhibits the surge of PGF2α, PGD2, and PGJ2 (Left),
while neutralizing the reduction of PGE2, THF diol, 15-HETE, 11-HETE, and
5-HETE (Center) by debris-stimulated macrophages. PTUPB suppressed the re-
lease of 15-oxoETE by macrophages (Right). Data are presented as means
(pmol/L) ± SEM n = 10 per group. *P < 0.05 or **P < 0.01 vs. macrophages + debris
or macrophages alone.

Fig. 4. PTUPB suppresses proangiogenic cytokines in vivo. Proangiogenic
cytokine arrays of (A) serum or (B) ascites from control or PTUPB-treated
mice intraperitoneally injected with ID8 (1 × 106 living cells). Serum and
ascites was collected on day 60 postinjection.
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rofecoxib (35). In this study, although PTUPB suppressed the re-
lease of critical protumorigenic cytokines in the debris-mediated
surge (Fig. 2 and SI Appendix, Fig. S3 B–E), it did not entirely
suppress the protumorigenic mediator osteopontin. This may be
because macrophages endogenously express high levels of osteo-
pontin (52). Osteopontin levels in patients can be modulated by
chemotherapy and serve as a tumor marker with CA 125 for ovarian
cancer (53, 54). In this study, PTUPB suppressed the release of
osteopontin by macrophages exposed to ovarian tumor cell
debris. PTUPB also enhances the antitumor activity of the
chemotherapeutic agent cisplatin in nondebris-stimulated tu-
mors (55). In addition, our findings complement previous
studies demonstrating the ability of PTUPB to suppress pri-
mary tumor growth and metastasis with minimal toxicity (35,
56), because PTUPB prolonged survival in mice bearing debris-
stimulated ovarian tumors and did not induce cell death of
RAW264.7 macrophages or ovarian epithelial cells. The addi-
tion of PTUPB to existing therapy regimens could prolong
survival by blocking the tumor-stimulatory activity of therapy-
generated tumor cell debris. Thus, COX-2/sEH inhibition may
represent a strategy to suppress tumor-associated inflammation
via prevention of a surge of cytokines and lipid mediators,
rather than targeting a single protumorigenic factor.
Dual COX-2/sEH inhibition could potentially have broad

implications in alleviating the inflammatory, and in some cases
fatal “cytokine storms” that can occur in various settings such,
as in immunotherapy (57, 58), infectious diseases (e.g., Ebola,
viral infections, or influenza), or immunological emergencies
(e.g., graft-versus-host disease or autoimmune diseases) (57,
59). The complexity of the cytokine storm has limited the de-
velopment of therapeutic strategies to inhibit the inflammatory
response and clinical trials targeting specific cytokines have
failed to date (59, 60). Here, our results indicate that the an-
titumor, antiangiogenic, and antiinflammatory activity of PTUPB
may protect the body from a therapy-induced debris-mediated in-
flammatory response.
While the “cytokine and eicosanoid storm” is well character-

ized in infectious diseases (47, 57), the role for chemotherapy-
induced cytokines and bioactive lipid mediators in cancer is
underappreciated and poorly characterized. Ovarian cancer pa-
tients may benefit from the suppression of proinflammatory
mediators associated with debris-stimulated tumor growth.
Conquering debris-stimulated tumor progression is paramount
to prevent tumor recurrence of treatment-resistant tumors. Thus,
dual COX-2/sEH inhibition is a therapeutic modality that may

complement cytotoxic cancer therapies by acting as a “surge
protector” against the therapy-induced cytokine/lipid mediator
surge to suppress debris-stimulated tumor growth.

Materials and Methods
Methods used for preparation of chemotherapy-generated tumor cell debris
(2, 3), macrophage conditioned medium (2, 3), flow cytometry (2, 3), oxylipin
profiling (LC-MS/MS) (61), and isolation of human monocyte-derived
macrophages (2) were all previously described. MTT proliferation assays
(Roche), cytokine arrays (R&D Systems), and ELISAs (R&D Systems) were
performed according to provided recommended protocols. For isolation of
primary murine peritoneal macrophages, female C57BL/6 mice were in-
traperitoneally injected with zymosan A (1 mg; Sigma Aldrich) and peri-
toneal macrophages were collected 72 h later by peritoneal lavage using
sterile PBS. Full protocols are described in the SI Appendix, Materials
and Methods.

In Vivo Studies.All animal studies were reviewed and approved by the Animal
Care and Use Committee of Beth Israel Deaconess Medical Center. Ovarian
tumor growth was monitored in 6-wk-old female C57BL/6 (The Jackson
Laboratory) or SCID mice (Charles River). Systemic treatment with PTUPB
(30 mg/kg/d) or control was administered via miniosmotic pumps (Alzet Inc.)
implanted into the peritoneum of the mice 4 wk postinjection. Systemic
chemotherapy with carboplatin (10 mg/kg every 3 d) or control initiated on day
of tumor cell injection.

Statistics. Statistical analyses for in vitro studies were performed using Stu-
dent’s two-tailed unpaired t test. Data are represented as mean ± SEM with
P values less than 0.05 considered statistically significant. The Kaplan–Meier
product-limit method and log-rank testing were used to evaluate survival
differences over time after the day of tumor cell injection between mice
coinjected with tumor cell debris and living cells vs. living cells alone. Data
are represented as percent survival with P values less than 0.01 considered
statistically significant.

ACKNOWLEDGMENTS. We thank Steve Moskowitz (Advanced Medical
Graphics) for preparation of the figures; Karolina Serhan and Julia
Piwowarski for their technical assistance; Dr. Jack Lawler for ID8 cells;
Catherine Butterfield for OVCAR5 cells; and Drs. Bruce R. Zetter and
Randolph S. Watnick for their advice and discussions. This work was
supported by the National Cancer Institute Grants R01 01CA170549-02 and
ROCA148633-01A4 (to D.P.); National Institute on Environmental Health
Sciences Superfund Research Program P42 ES004699 and Grant R01
ES002710 (to B.D.H.); the Stop and Shop Pediatric Brain Tumor Fund
(M.W.K.); the CJ Buckley Pediatric Brain Tumor Fund (M.W.K.); Alex
Lemonade Stand (M.W.K.); Molly’s Magic Wand for Pediatric Brain Tumors
(M.W.K.); the Markoff Foundation Art-In-Giving Foundation (M.W.K.); the
Kamen Foundation (M.W.K.); Jared Branfman Sunflowers For Life (M.W.K.);
the Joe Andruzzi Foundation (M.W.K.); and the Credit Unions Kids at
Heart (D.P.).

Fig. 5. Suppression of debris-stimulated ovarian tumor growth by PTUPB. Percent survival of mice coinjected intraperitoneally with (A) paclitaxel- or (B)
carboplatin-generated ID8 debris (9 × 105 dead cells) and ID8 living cells (1 × 106), or (C) coinjected orthotopically with paclitaxel-generated ID8 debris (9 × 105

dead cells) and ID8 living cells (1 × 106). Image shows representative orthotopic tumors on day 62 postinjection. (Scale bar,1 cm.) Systemic treatment with
PTUPB (30 mg/kg/d) or control initiated 4 wk postinjection. n = 4–5 mice per group. Kaplan–Meier analysis and log-rank testing indicated significantly
prolonged survival in mice treated with PTUPB compared with control in the (A) paclitaxel-generated (log-rank test = 9.70, *P = 0.0018) and (B) carboplatin-
generated (log-rank test = 9.85, *P = 0.0017) debris-stimulated intraperitoneal ovarian tumor models, as well as the (C) paclitaxel-generated debris-
stimulated orthotopic ovarian tumor model (log-rank test = 7.91, *P = 0.005).
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